skip to main content


Search for: All records

Creators/Authors contains: "Stoner, Joseph S."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The Antarctic Circumpolar Current (ACC) represents the world’s largest ocean-current system and affects global ocean circulation, climate and Antarctic ice-sheet stability1–3. Today, ACC dynamics are controlled by atmospheric forcing, oceanic density gradients and eddy activity4. Whereas palaeoceanographic reconstructions exhibit regional heterogeneity in ACC position and strength over Pleistocene glacial–interglacial cycles5–8, the long-term evolution of the ACC is poorly known. Here we document changes in ACC strength from sediment cores in the Pacific Southern Ocean. We find no linear long-term trend in ACC flow since 5.3 million years ago (Ma), in contrast to global cooling9and increasing global ice volume10. Instead, we observe a reversal on a million-year timescale, from increasing ACC strength during Pliocene global cooling to a subsequent decrease with further Early Pleistocene cooling. This shift in the ACC regime coincided with a Southern Ocean reconfiguration that altered the sensitivity of the ACC to atmospheric and oceanic forcings11–13. We find ACC strength changes to be closely linked to 400,000-year eccentricity cycles, probably originating from modulation of precessional changes in the South Pacific jet stream linked to tropical Pacific temperature variability14. A persistent link between weaker ACC flow, equatorward-shifted opal deposition and reduced atmospheric CO2during glacial periods first emerged during the Mid-Pleistocene Transition (MPT). The strongest ACC flow occurred during warmer-than-present intervals of the Plio-Pleistocene, providing evidence of potentially increasing ACC flow with future climate warming. 
    more » « less
    Free, publicly-accessible full text available March 28, 2025
  2. Abstract

    We investigate the amplitude and frequency of directional geomagnetic change since 15 ka in the Northern North Atlantic (∼67°N) using five “ultra‐high” resolution continental shelf sediment cores deposited at rates greater than 1 m/kyr. The ages of these cores are constrained by 103 radiocarbon dates with reservoir ages assessed through tephra correlation to terrestrial archives. Our study aims to address many of the uncertainties that are common in sedimentary paleomagnetic studies, including signal attenuation in low to moderate resolution archives and difficulty to demonstrate reproducibility in higher resolution archives. The “ultra‐high” accumulation rates of our cores reduce “lock‐in” and smoothing uncertainties associated with magnetic acquisition processes. Abundant radiocarbon dates along with an objective alignment algorithm provide a test of signal reproducibility at sub‐millennial timescales. The paleomagnetic secular variation (PSV) signal, evaluated as individual records and as a new stack (GREENICE15k), validates prior results, but provides stronger geochronological constraints, demonstrates a reproducible PSV signal and amplitude, and extends through the abrupt Bølling–Allerød and Younger Dryas climate transitions of the latest Pleistocene. While broadly consistent with time‐varying spherical harmonic models and varve dated records from Northern Europe, we demonstrate greater variance and higher amplitudes—particularly at sub‐millennial timescales. This robust variability on centennial timescales is rarely observed or discussed, but is likely important to our understanding of some of the most intriguing aspects of the geodynamo.

     
    more » « less
  3. SUMMARY

    International Ocean Drilling Program (IODP) Expedition 341 recovered sediments from the south Alaska continental slope that preserves a well resolved and dated inclination record over most of the past ∼43 000 yr. The Site U1419 chronology is among the highest resolution in the world, constrained by 173 radiocarbon dates, providing the ability to study Palaeomagnetic Secular Variation (PSV) on centennial to millennial timescales. This record has an exceptionally expanded late Pleistocene sedimentary record with sedimentation rates commonly exceeding 100 cm kyr–1, while also preserving a lower resolution Holocene PSV record at the top. Natural and laboratory-induced magnetic remanences of U1419 u-channels from the 112-m-long spliced record were studied using stepwise AF demagnetization. Hysteresis loops were obtained on 95 and IRM acquisition curves on 9 discrete samples to facilitate magnetic domain state, coercivity and magnetic mineralogical determinations. Due to complexities related to lithology, magnetic mineralogy, and depositional and post-depositional processes, Site U1419 sediments are not suitable for palaeointensity studies and declination could not be robustly reconstructed. Progressive (titano-)magnetite dissolution with depth results in decreasing NRM intensity and signal-to-noise that is exacerbated at higher demagnetization steps. As a result, inclination measured after the 20 mT AF demagnetization step provides the most reliable directional record. Inclination appears to be well resolved with removal of just a few intervals influenced by depositional and/or sampling and coring deformation. The shipboard inclination stack from nearby IODP Site U1418, on a new age model developed from 19 radiocarbon dates on U1418 and 18 magnetic susceptibility-based tie-points to site survey core EW0408-87JC, verifies centennial to millennial scale variations in inclination observed in U1419. Comparisons with other independently dated records from the NE Pacific and western North America suggest that these sites likely capture regional geomagnetic variability. As such, this new high-resolution and well-dated inclination record, especially robust between 15 and 30 cal kyr BP, offers new geomagnetic insights and a regional correlation tool to explore this generally understudied part of the world.

     
    more » « less
  4. SUMMARY We present and make publicly available a dynamic programming algorithm to simultaneously align the inclination and declination vector directions of sedimentary palaeomagnetic secular variation data. This algorithm generates a library of possible alignments through the systematic variation of assumptions about the relative accumulation rate and shared temporal overlap of two or more time-series. The palaeomagnetist can then evaluate this library of reproducible and objective alignments using available geological constraints, statistical methods and expert knowledge. We apply the algorithm to align previously (visually) correlated medium to high accumulation rate northern North Atlantic Holocene deposits (101–102 cm ka–1) with strong radiocarbon control. The algorithm generates plausible alignments that largely conform with radiocarbon and magnetic acquisition process uncertainty. These alignments illustrate the strengths and limitations of this numerical approach. 
    more » « less
  5. null (Ed.)
    New radiocarbon and sedimentological results from the Gulf of Alaska document recurrent millennial-scale episodes of reorganized Pacific Ocean ventilation synchronous with rapid Cordilleran Ice Sheet discharge, indicating close coupling of ice-ocean dynamics spanning the past 42,000 years. Ventilation of the intermediate-depth North Pacific tracks strength of the Asian monsoon, supporting a role for moisture and heat transport from low latitudes in North Pacific paleoclimate. Changes in carbon-14 age of intermediate waters are in phase with peaks in Cordilleran ice-rafted debris delivery, and both consistently precede ice discharge events from the Laurentide Ice Sheet, known as Heinrich events. This timing precludes an Atlantic trigger for Cordilleran Ice Sheet retreat and instead implicates the Pacific as an early part of a cascade of dynamic climate events with global impact. 
    more » « less
  6. Abstract

    Abrupt warming events recorded in Greenland ice cores known as Dansgaard-Oeschger (DO) interstadials are linked to changes in tropical circulation during the last glacial cycle. Corresponding variations in South American summer monsoon (SASM) strength are documented, most commonly, in isotopic records from speleothems, but less is known about how these changes affected precipitation and Andean glacier mass balance. Here we present a sediment record spanning the last ~50 ka from Lake Junín (Peru) in the tropical Andes that has sufficient chronologic precision to document abrupt climatic events on a centennial-millennial time scale. DO events involved the near-complete disappearance of glaciers below 4700 masl in the eastern Andean cordillera and major reductions in the level of Peru’s second largest lake. Our results reveal the magnitude of the hydroclimatic disruptions in the highest reaches of the Amazon Basin that were caused by a weakening of the SASM during abrupt arctic warming. Accentuated warming in the Arctic could lead to significant reductions in the precipitation-evaporation balance of the southern tropical Andes with deleterious effects on this densely populated region of South America.

     
    more » « less
  7. Abstract

    We make fundamental observations of the particle size variability of magnetic properties from 71 core tops that span the southern Greenland and Norwegian Seas. These data provide the first detailed regional characterization of how bulk magnetic properties vary with sediment texture, sediment source, and sediment transport. Magnetic susceptibility (MS) and hysteresis parameters were measured on the bulk sediment and the five constituent sediment particle size fractions (clay, fine silt, medium silt, coarse silt, and sand). The median MS value of the medium silt size fraction is ~3–5 times higher than that of the sand and clay size fractions and results in a strong sensitivity of bulk MS to sediment texture. Hysteresis properties of the clay size fraction are relatively homogeneous and contrast that silt and sand size fractions which show regional differences across the study area. These coarser fractions are more transport limited and using medium silt hysteresis measurements and low temperature MS behavior we establish three endmembers that effectively explain the variability observed across the region. We model the response of bulk magnetic properties to changes in sediment texture and suggest that variations in sediment source are required to explain the bulk magnetic property variability observed in cores across the southern Greenland and Norwegian Seas. These findings imply that sediment source has a greater influence on driving bulk magnetic property variability across this region than has previously been assumed.

     
    more » « less